
Raspberry Pi and AM2320
Temperature and Humidity Sensor with I2C Interface

Hans-Petter Halvorsen

https://www.halvorsen.blog

• Introduction
• AM2320 Temperature and Humidity

Sensor
• Raspberry Pi and I2C Interface
• Python Examples for AM2320 Sensor

Contents

Introduction

Hans-Petter Halvorsen

https://www.halvorsen.blog

Table of Contents

Introduction

• Different AM2320 Python Libraries/Examples exists
– These are typically available from https://pypi.org or

https://github.com

• In this Tutorial Python Examples will be created
from “scratch” by:
– Reading the Datasheet carefully
– Using the low-level smbus Python Library for I2C

Communication

https://pypi.org/
https://github.com/

Introduction
This Tutorial will demonstrate the use of a
AM2320 Temperature and Humidity Sensor in
combination with Raspberry Pi and Python

https://www.adafruit.com/product/3721

https://www.adafruit.com/product/3721

Raspberry Pi

Wires

Breadboard

AM2320

Hardware

AM2320

Hans-Petter Halvorsen

https://www.halvorsen.blog

Temperature and Humidity Sensor

Table of Contents

• Temperature and Humidity Sensor
• I2C Interface
• Range: −40°𝐶 to +80°𝐶 and 0 to 100%𝑅𝐻
• Accuracy: Temperature ±0.5℃ and Humidity ±3%𝑅𝐻 according to

the Datasheet
• Sampling Rate: 0.5𝐻𝑧, this means the minimum interval between

readings is 2 seconds
• I2C address: 0x5C (cannot be changed)
• Price: about $4
• Sensor Overview: https://learn.adafruit.com/adafruit-am2320-

temperature-humidity-i2c-sensor
• Datasheet: https://cdn-shop.adafruit.com/product-

files/3721/AM2320.pdf

AM2320 Sensor

https://learn.adafruit.com/adafruit-am2320-temperature-humidity-i2c-sensor
https://learn.adafruit.com/adafruit-am2320-temperature-humidity-i2c-sensor
https://cdn-shop.adafruit.com/product-files/3721/AM2320.pdf
https://cdn-shop.adafruit.com/product-files/3721/AM2320.pdf

23 cm

12 cm

VDD
SDA
GN

D
SCL

I2C Interface

Pin Overview:
• VDD – Power, 3 − 5𝑉𝐷𝐶
• SDA - I2C data in/out, requires a

pullup resistor of 2 − 10𝐾Ω	to VDD
• GND - Ground
• SCL - I2C clock in, requires a pullup

resistor of 2 − 10𝐾Ω to VDD

https://learn.adafruit.com/adafruit-am2320-temperature-humidity-i2c-sensor/pinouts

AM2320 Sensor

Note! The Raspberry Pi has built-in pull
up resistors on SDA/SCL, so there is no
need to add external pullup resistors

https://learn.adafruit.com/adafruit-am2320-temperature-humidity-i2c-sensor/pinouts

AM2320 Wiring
SDA (GPIO2) Pin3
SCL (GPIO3) Pin5

VDD +3.3V Pin 1

GND Pin 6

VDD
SDA
GN

D
SCL

AM2320

Raspberry Pi
I2C Interface

Hans-Petter Halvorsen

https://www.halvorsen.blog

Table of Contents

Access I2C on Raspberry Pi
You need to Enable I2C on the Raspberry Pi

I2C Wiring on Raspberry Pi
GPIO 40 pins Connector

Note! The I2C pins include a fixed 1.8 kΩ pull-up resistor to 3.3v.

Detecting I2C Devices

sudo i2cdetect -y 1

sudo apt-get install -y i2c-tools

Install I2C Tools on the Raspberry Pi:

Detecting and Find the Address of the I2C Device using the i2cdetect command:

We can read and write its registers using i2cget, i2cset and i2cdump

sudo i2cget -y 1 0x5C

Example:

AM2320 Device Address

Detecting I2C Devices
sudo i2cdetect -y 1

Sometimes you need to run
the command twice because
the sensor goes into sleep
mode

0x5C is the I2C
address for the
AM2320 Sensor

Python Examples

Hans-Petter Halvorsen

https://www.halvorsen.blog

AM2320 Temperature and Humidity Sensor

Table of Contents

Python Examples
• Different AM2320 Python Libraries/Examples exists
• In this Tutorial Python Examples will be created

from “scratch” by reading the Datasheet and using
the low-level smbus Python Library for I2C
Communication

• AM2320 Datasheet:
https://cdn-shop.adafruit.com/product-
files/3721/AM2320.pdf

• smbus: https://pypi.org/project/smbus/

https://cdn-shop.adafruit.com/product-files/3721/AM2320.pdf
https://cdn-shop.adafruit.com/product-files/3721/AM2320.pdf
https://pypi.org/project/smbus/

smbus Python Library
You can access I2C devices from Python using the smbus library:

import smbus
i2cbus = 1 #Default I2C Bus on Raspberry Pi
addr = 0x15 #am2320
bus = smbus.SMBus(i2cbus) # Initialize

#Write Data
bus.write_i2c_block_data(addr,cmd,vals[])
#Read Data
data = bus.read_i2c_block_data(addr,cmd)

https://pinout.xyz/pinout/i2c

SMBus (System Management Bus) is a subset from the I2C protocol

https://raspberry-projects.com/pi/programming-in-python/i2c-programming-in-python/using-the-i2c-interface-2

https://pinout.xyz/pinout/i2c
https://raspberry-projects.com/pi/programming-in-python/i2c-programming-in-python/using-the-i2c-interface-2

AM2320 Datasheet: https://cdn-shop.adafruit.com/product-files/3721/AM2320.pdf

AM2320 Datasheet

https://cdn-shop.adafruit.com/product-files/3721/AM2320.pdf

AM2320 Datasheet

AM2320 Datasheet: https://cdn-shop.adafruit.com/product-files/3721/AM2320.pdf

In the Datasheet for
the given sensor, you
find all information
you need. Here is
some important
excerpts

https://cdn-shop.adafruit.com/product-files/3721/AM2320.pdf

am2320sensor.py
import smbus
import time

i2cbus = 1 #Default
address = 0x5C #AM2020 I2C Address
bus = smbus.SMBus(i2cbus)

def WakeSensor():
 ..
def ReadTemperature():
 ..
def ReadHumidity():
 ..
def ReadTemperatureHumidity():
 ..

WakeSensor()
def WakeSensor():
 while True:
 try:
 bus.write_i2c_block_data(address, 0x00, [])
 break
 except IOError:
 pass

 time.sleep(0.003)

We just send an empty string to “wake up” the sensor from “sleep mode”

ReadTemperature()
def ReadTemperature():
 WakeSensor()
 while True:
 try:
 bus.write_i2c_block_data(address, 0x03, [0x02, 0x02])
 break
 except IOError:
 pass

 time.sleep(0.015)

 try:
 block = bus.read_i2c_block_data(address, 0, 4)
 except IOError:
 pass

 temperature = float(block[2] << 8 | block[3]) / 10
 return temperature

From Datasheet: Wait at least 1.5ms for result

Read Temperature Details
bus.write_i2c_block_data(address, 0x03, [0x02, 0x02])

block = bus.read_i2c_block_data(address, 0, 4)

temperature = float(block[2] << 8 | block[3]) / 10

[0][1] [2] [3]

Read 4 blocks

From Datasheet: Temperature sensor value is a string of 10 times the actual temperature value

<< is bitwise left shift operator

Each blocks is 8 bits

| is bitwise OR operator

We put low + high part of Temperature value together:

From Datasheet:

Blocks:

Start
Address

Number of Registers (High and
Low Temperature register)

function code (0x03)

ReadHumidity()
def ReadHumidity():
 WakeSensor()
 while True:
 try:
 bus.write_i2c_block_data(address, 0x03, [0x00, 0x02])
 break
 except IOError:
 pass

 time.sleep(0.015)

 try:
 block = bus.read_i2c_block_data(address, 0, 4)
 except IOError:
 pass

 humidity = float(block[2] << 8 | block[3]) / 10
 return humidity

From Datasheet: Wait at least 1.5ms for result

Read Humidity Details
bus.write_i2c_block_data(address, 0x03, [0x00, 0x02])

block = bus.read_i2c_block_data(address, 0, 4)

temperature = float(block[2] << 8 | block[3]) / 10

[0][1] [2] [3]

Read 4 blocks

From Datasheet: Humidity sensor value is a string of 10 times the actual humidity value

<< is bitwise left shift operator

Each blocks is 8 bits

| is bitwise OR operator

We put low + high part of Temperature value together:

From Datasheet:

Blocks:

Start
Address

Number of Registers (High and
Low Humidity register)

function code (0x03)

ReadTemperatureHumidity()
def ReadTemperatureHumidity():
 WakeSensor()
 while True:
 try:
 bus.write_i2c_block_data(address, 0x03, [0x00, 0x04])
 break
 except IOError:
 pass

 time.sleep(0.015)

 try:
 block = bus.read_i2c_block_data(address, 0, 6)
 except IOError:
 pass

 humidity = float(block[2] << 8 | block[3]) / 10
 temperature = float(block[4] << 8 | block[5]) / 10
 return temperature, humidity

This Function reads both
Temperature and Humidity

Python Code Example
import time
import am2320sensor

while True:
 temperature = am2320sensor.ReadTemperature()
 print(temperature)

 humidity = am2320sensor.ReadHumidity()
 print(humidity)

 time.sleep(5)

Improved Formatting
import time
import am2320sensor

i = 1
while True:
 temperature = am2320sensor.ReadTemperature()
 humidity = am2320sensor.ReadHumidity()
 print(i, "Temperature:", temperature, "°C")
 print("Humidity:", humidity, "%RH\n")
 i = i + 1
 time.sleep(5)

Results

ReadTemperatureHumidity() Example
import time
import am2320sensor

i = 1
while True:
 t, h = am2320sensor.ReadTemperatureHumidity()

 print(i, "Temperature:", t, "°C")
 print("Humidity:", h, "%RH\n")

 i = i + 1
 time.sleep(5)

Discussions
• In this Tutorial Python Examples have bee created from “scratch”

by reading the Datasheet and using the low-level smbus Python
Library for I2C Communication

• It has been implemented as a Python Module with functions for
reading Temperature and Humidity

• There are still several improvements to make
• No CRC check (error check code) has been implemented
• A Python Class and Library could have been made
• It could have been deployed to https://pypi.org to make it easy to

install by using “pip install xxx” or from Thonny Python Editor
(Tools -> Manage packages…)

• +++

https://pypi.org/

Summary
• In this Tutorial an AM2320 Temperature and Humidity

Sensor has been used in combination with Raspberry Pi
• Many different Python Libraries and Examples exists

– These are typically available from https://pypi.org or
https://github.com

• In this Tutorial Python Examples have been created from
“scratch” by reading the Datasheet and using the low-level
smbus Python Library for I2C Communication
– It has been implemented as a Python Module with functions for

reading Temperature and Humidity
– So far it is not available from https://pypi.org or https://github.com
– But you can download it for free from my Website/Blog

https://pypi.org/
https://github.com/
https://pypi.org/
https://github.com/

Resources
• AM2320 Sensor Overview:

https://learn.adafruit.com/adafruit-am2320-temperature-
humidity-i2c-sensor

• Datasheet: https://cdn-shop.adafruit.com/product-
files/3721/AM2320.pdf

• CircuitPython: https://learn.adafruit.com/circuitpython-on-
raspberrypi-linux

• Adafruit am2320 Library:
https://docs.circuitpython.org/projects/am2320/en/latest/in
dex.html

• Gozem/am2320: https://github.com/Gozem/am2320
• am2320-driver: https://pypi.org/project/am2320-driver/

https://learn.adafruit.com/adafruit-am2320-temperature-humidity-i2c-sensor
https://learn.adafruit.com/adafruit-am2320-temperature-humidity-i2c-sensor
https://cdn-shop.adafruit.com/product-files/3721/AM2320.pdf
https://cdn-shop.adafruit.com/product-files/3721/AM2320.pdf
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://docs.circuitpython.org/projects/am2320/en/latest/index.html
https://docs.circuitpython.org/projects/am2320/en/latest/index.html
https://github.com/Gozem/am2320
https://pypi.org/project/am2320-driver/

Hans-Petter Halvorsen

University of South-Eastern Norway
www.usn.no

E-mail: hans.p.halvorsen@usn.no
Web: https://www.halvorsen.blog

http://www.usn.no/
mailto:hans.p.halvorsen@usn.no
https://www.halvorsen.blog/

