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Introduction

• Different AM2320 Python Libraries/Examples exists
– These are typically available from https://pypi.org or 

https://github.com 

• In this Tutorial Python Examples will be created 
from “scratch” by:
– Reading the Datasheet carefully
– Using the low-level smbus Python Library for I2C 

Communication

https://pypi.org/
https://github.com/


Introduction
This Tutorial will demonstrate the use of a 
AM2320 Temperature and Humidity Sensor in 
combination with Raspberry Pi and Python

https://www.adafruit.com/product/3721 

https://www.adafruit.com/product/3721
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Breadboard
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• Temperature and Humidity Sensor
• I2C Interface
• Range: −40°𝐶 to +80°𝐶 and 0 to 100%𝑅𝐻
• Accuracy: Temperature ±0.5℃ and Humidity ±3%𝑅𝐻 according to 

the Datasheet
• Sampling Rate: 0.5𝐻𝑧, this means the minimum interval between 

readings is 2 seconds
• I2C address: 0x5C (cannot be changed)
• Price: about $4
• Sensor Overview: https://learn.adafruit.com/adafruit-am2320-

temperature-humidity-i2c-sensor 
• Datasheet: https://cdn-shop.adafruit.com/product-

files/3721/AM2320.pdf 

AM2320 Sensor

https://learn.adafruit.com/adafruit-am2320-temperature-humidity-i2c-sensor
https://learn.adafruit.com/adafruit-am2320-temperature-humidity-i2c-sensor
https://cdn-shop.adafruit.com/product-files/3721/AM2320.pdf
https://cdn-shop.adafruit.com/product-files/3721/AM2320.pdf
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I2C Interface

Pin Overview:
• VDD – Power, 3 − 5𝑉𝐷𝐶
• SDA - I2C data in/out, requires a 

pullup resistor of 2 − 10𝐾Ω	to VDD
• GND - Ground
• SCL - I2C clock in, requires a pullup 

resistor of 2 − 10𝐾Ω to VDD

https://learn.adafruit.com/adafruit-am2320-temperature-humidity-i2c-sensor/pinouts 

AM2320 Sensor

Note! The Raspberry Pi has built-in pull 
up resistors on SDA/SCL, so there is no 
need to add  external pullup resistors

https://learn.adafruit.com/adafruit-am2320-temperature-humidity-i2c-sensor/pinouts


AM2320 Wiring
SDA (GPIO2) Pin3
SCL (GPIO3) Pin5

VDD +3.3V Pin 1

GND Pin 6

VDD
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GN

D
SCL
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Access I2C on Raspberry Pi
You need to Enable I2C on the Raspberry Pi



I2C Wiring on Raspberry Pi
GPIO 40 pins Connector

Note! The I2C pins include a fixed 1.8 kΩ pull-up resistor to 3.3v.



Detecting I2C Devices

sudo i2cdetect -y 1

sudo apt-get install -y i2c-tools

Install I2C Tools on the Raspberry Pi:

Detecting and Find the Address of the I2C Device using the i2cdetect command: 

We can read and write its registers using i2cget, i2cset and i2cdump

sudo i2cget -y 1 0x5C

Example:

AM2320 Device Address



Detecting I2C Devices
sudo i2cdetect -y 1

Sometimes you need to run 
the command twice because 
the sensor goes into sleep 
mode

0x5C is the I2C 
address for the 
AM2320 Sensor
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Python Examples
• Different AM2320 Python Libraries/Examples exists
• In this Tutorial Python Examples will be created 

from “scratch” by reading the Datasheet and using 
the low-level smbus Python Library for I2C 
Communication

• AM2320 Datasheet: 
https://cdn-shop.adafruit.com/product-
files/3721/AM2320.pdf 

• smbus: https://pypi.org/project/smbus/ 

https://cdn-shop.adafruit.com/product-files/3721/AM2320.pdf
https://cdn-shop.adafruit.com/product-files/3721/AM2320.pdf
https://pypi.org/project/smbus/


smbus Python Library
You can access I2C devices from Python using the smbus library:

import smbus
i2cbus = 1 #Default I2C Bus on Raspberry Pi
addr = 0x15 #am2320 
bus = smbus.SMBus(i2cbus) # Initialize

#Write Data
bus.write_i2c_block_data(addr,cmd,vals[])
#Read Data
data = bus.read_i2c_block_data(addr,cmd)

https://pinout.xyz/pinout/i2c 

SMBus (System Management Bus) is a subset from the I2C protocol

https://raspberry-projects.com/pi/programming-in-python/i2c-programming-in-python/using-the-i2c-interface-2 

https://pinout.xyz/pinout/i2c
https://raspberry-projects.com/pi/programming-in-python/i2c-programming-in-python/using-the-i2c-interface-2


AM2320 Datasheet: https://cdn-shop.adafruit.com/product-files/3721/AM2320.pdf 

AM2320 Datasheet

https://cdn-shop.adafruit.com/product-files/3721/AM2320.pdf


AM2320 Datasheet

AM2320 Datasheet: https://cdn-shop.adafruit.com/product-files/3721/AM2320.pdf 

In the Datasheet for 
the given sensor, you 
find all information 
you need. Here is 
some important 
excerpts 

https://cdn-shop.adafruit.com/product-files/3721/AM2320.pdf


am2320sensor.py
import smbus
import time

i2cbus = 1 #Default
address = 0x5C #AM2020 I2C Address
bus = smbus.SMBus(i2cbus)

def WakeSensor():
  ..
def ReadTemperature():
  ..
def ReadHumidity():
  ..
def ReadTemperatureHumidity():
  ..



WakeSensor()
def WakeSensor():
    while True:
        try:
            bus.write_i2c_block_data(address, 0x00, [])
            break
        except IOError:
            pass

    time.sleep(0.003)

We just send an empty string to “wake up” the sensor from “sleep mode”



ReadTemperature()
def ReadTemperature():
    WakeSensor()
    while True:
        try:
            bus.write_i2c_block_data(address, 0x03, [0x02, 0x02])
            break
        except IOError:
            pass

    time.sleep(0.015)
    
    try:
        block = bus.read_i2c_block_data(address, 0, 4)
    except IOError:
        pass
    
    temperature = float(block[2] << 8 | block[3]) / 10
    return temperature

From Datasheet: Wait at least 1.5ms for result



Read Temperature Details
bus.write_i2c_block_data(address, 0x03, [0x02, 0x02])

block = bus.read_i2c_block_data(address, 0, 4)

temperature = float(block[2] << 8 | block[3]) / 10

[0][1] [2] [3]

Read 4 blocks

From Datasheet: Temperature sensor value is a string of 10 times the actual temperature value

<< is bitwise left shift operator

Each blocks is 8 bits

| is bitwise OR operator

We put low + high part  of Temperature value together:

From Datasheet:

Blocks:

Start
Address

Number of Registers (High and 
Low Temperature register)

function code (0x03)



ReadHumidity()
def ReadHumidity():
    WakeSensor()
    while True:
        try:
            bus.write_i2c_block_data(address, 0x03, [0x00, 0x02])
            break
        except IOError:
            pass

    time.sleep(0.015)
    
    try:
        block = bus.read_i2c_block_data(address, 0, 4)
    except IOError:
        pass
    
    humidity = float(block[2] << 8 | block[3]) / 10
    return humidity

From Datasheet: Wait at least 1.5ms for result



Read Humidity Details
bus.write_i2c_block_data(address, 0x03, [0x00, 0x02])

block = bus.read_i2c_block_data(address, 0, 4)

temperature = float(block[2] << 8 | block[3]) / 10

[0][1] [2] [3]

Read 4 blocks

From Datasheet: Humidity sensor value is a string of 10 times the actual humidity value

<< is bitwise left shift operator

Each blocks is 8 bits

| is bitwise OR operator

We put low + high part  of Temperature value together:

From Datasheet:

Blocks:

Start
Address

Number of Registers (High and 
Low Humidity register)

function code (0x03)



ReadTemperatureHumidity()
def ReadTemperatureHumidity():
    WakeSensor()
    while True:
        try:
            bus.write_i2c_block_data(address, 0x03, [0x00, 0x04])
            break
        except IOError:
            pass

    time.sleep(0.015)
    
    try:
        block = bus.read_i2c_block_data(address, 0, 6)
    except IOError:
        pass
    
    humidity = float(block[2] << 8 | block[3]) / 10
    temperature = float(block[4] << 8 | block[5]) / 10
    return temperature, humidity

This Function reads both 
Temperature and Humidity



Python Code Example
import time
import am2320sensor

while True:
    temperature = am2320sensor.ReadTemperature()
    print(temperature)

    humidity = am2320sensor.ReadHumidity()
    print(humidity)
    
    time.sleep(5)



Improved Formatting
import time
import am2320sensor

i = 1
while True:
    temperature = am2320sensor.ReadTemperature()
    humidity = am2320sensor.ReadHumidity()
    print(i, "Temperature:", temperature, "°C")
    print("Humidity:", humidity, "%RH\n")
    i = i + 1
    time.sleep(5)



Results



ReadTemperatureHumidity() Example
import time
import am2320sensor

i = 1
while True:
    t, h = am2320sensor.ReadTemperatureHumidity()
    

    print(i, "Temperature:", t, "°C")
    print("Humidity:", h, "%RH\n")

    i = i + 1
    time.sleep(5)



Discussions
• In this Tutorial Python Examples have bee created from “scratch” 

by reading the Datasheet and using the low-level smbus Python 
Library for I2C Communication

• It has been implemented as a Python Module with functions for 
reading Temperature and Humidity

• There are still several improvements to make
• No CRC check (error check code) has been implemented
• A Python Class and Library could have been made
• It could have been deployed to https://pypi.org to make it easy to 

install by using “pip install xxx” or from Thonny Python Editor 
(Tools -> Manage packages…)

• +++

https://pypi.org/


Summary
• In this Tutorial an AM2320 Temperature and Humidity 

Sensor has been used in combination with Raspberry Pi
• Many different Python Libraries and Examples exists

– These are typically available from https://pypi.org or 
https://github.com 

• In this Tutorial Python Examples have been created from 
“scratch” by reading the Datasheet and using the low-level 
smbus Python Library for I2C Communication
– It has been implemented as a Python Module with functions for 

reading Temperature and Humidity
– So far it is not available from https://pypi.org or https://github.com 
– But you can download it for free from my Website/Blog

https://pypi.org/
https://github.com/
https://pypi.org/
https://github.com/


Resources
• AM2320 Sensor Overview: 

https://learn.adafruit.com/adafruit-am2320-temperature-
humidity-i2c-sensor

• Datasheet: https://cdn-shop.adafruit.com/product-
files/3721/AM2320.pdf  

• CircuitPython: https://learn.adafruit.com/circuitpython-on-
raspberrypi-linux

• Adafruit am2320 Library: 
https://docs.circuitpython.org/projects/am2320/en/latest/in
dex.html  

• Gozem/am2320: https://github.com/Gozem/am2320
• am2320-driver: https://pypi.org/project/am2320-driver/  

https://learn.adafruit.com/adafruit-am2320-temperature-humidity-i2c-sensor
https://learn.adafruit.com/adafruit-am2320-temperature-humidity-i2c-sensor
https://cdn-shop.adafruit.com/product-files/3721/AM2320.pdf
https://cdn-shop.adafruit.com/product-files/3721/AM2320.pdf
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://docs.circuitpython.org/projects/am2320/en/latest/index.html
https://docs.circuitpython.org/projects/am2320/en/latest/index.html
https://github.com/Gozem/am2320
https://pypi.org/project/am2320-driver/
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